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Abstract 

A method of global parametric fault diagnosis in analog integrated circuits is presented in this paper. The
method is based on basic features calculated from a circuit under the test's time domain response to a voltage
step, i.e. locations of maxima and minima of the circuit-under-test response and its first order derivative. The 
testing and diagnosis process is executed with the use of an artificial neural network. The neural network is
supplied with extracted basic features. After evaluation and discrimination, the output indicates the circuit state. 
The proposed diagnosis method has been verified with the use of exemplary integrated circuits – an operational 
amplifier µA741, a sinewave oscillator and an integrated band-pass filter. 
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1. Introduction 
 

World production of analog integrated circuits increases yearly. Single soft and hard faults, 
typical for discrete analog circuits, are not the most common ones in analog integrated circuits 
(AIC) diagnosis [1-5]. The character of integrated circuits manufacturing technology causes a 
change of faults’ profile. Integrated devices of the same type (e.g. resistors, capacitors, etc.) 
are usually manufactured in the same process [6-10]. As a result, a critical and proportional 
change of values of majority (or all) of circuit parameters of one type, beyond their tolerance 
region, is the major problem. This type of multiple parametric faults is classified as a global 
parametric fault (GPF). 

 Digital circuit testing has been already developed to the point of automation. Yet, analog 
electronic circuit diagnosis still relies on the test engineers' knowledge and intuition to work 
out routines allowing for efficient AIC diagnosis [1, 11-14]. The difficulty of analog circuits 
diagnosis is caused by the complexity of analog signals, a need for anticipation of  circuit 
parameters' tolerances, the complexness of parametric fault models, the influence of a fault 
propagates toward circuits inputs and outputs, other reasons, too numerous to list. 

There are AIC time domain response basic features defined in this paper. Maxima and 
minima sets, for both circuit response and its first order derivative, are used as a base for the 
AIC diagnosis. Artificial neural networks (ANN) have been frequently utilized for the 
purpose of AIC diagnosis (e.g. [13, 14]). In this paper, ANN has been utilized for further 
information processing and GPF location and identification. The presented method requires 
fault simulation at the before-test stage [1, 15-18]. 

The method’s basic principles have been presented in chapter 2. A model of an integrated 
circuit is demonstrated and employed for the global parametric fault definition.  

Basic features, extracted from the circuit under test (CUT) time domain response and its 
first order derivative are defined.  



Chapter 3 has been devoted to applications of artificial neural networks for the purpose of 
global parametric faults identification. ANN outputs are defined with their activation 
functions (transfer functions). The AIC state is represented by a binary vector. In order to 
convert the continuous domain into a digital one, discrimination methods are introduced.  

The first of the presented methods uses a modified “one hot” circuit states coding and a 
modified “winner takes all” discrimination strategy. The other two diagnosis routines have 
employed a natural binary code for the purpose of circuit states encoding 

The presented diagnosis methods have been verified, in chapter 4, with the use of 
exemplary circuits - an operational amplifier µA741, a sinewave oscillator and an integrated 
band-pass filter.  

The methods should be utilized at the prototype phase of integrated circuit manufacturing 
for the purpose of tweaking technological process parameters. 

The paper is concluded in chapter 5. 
 

2. Basic Principles 
 
2.1. Integrated Circuit and Global Parametric Fault Models 
 

Circuit and global parametric fault models have been constructed with listed assumptions, 
i.e. all circuit parameters  of the same type:  
-     are manufactured in a single process and on a single layer,  
− have the same geometrical orientation on a chip, hence photolithographic masks 

desynchronisation affects them in the same way  
− all circuit parameters of one type have the same tolerances [2,6,7]. 

An analog integrated circuit is defined as a set of grouped circuit parameters: 
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where:  
− m

iP  – i-th circuit parameter of the  m-th group, 
− mN  – number of circuit parameters of the m-th group, 
− M –  number of circuit parameters’ groups. 

Circuit parameters may be grouped according to their type (e.g. resistors, capacitors, 
diodes, etc.), their location on the chip, their orientation on the chip, etc. The total number of 
circuit parameters is given by:  
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A global parametric fault model is essential for the purpose of faulty circuits’ performance 

analysis. The GPF model is given with an equation: 
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where: 
− GPFj – j-th faulty circuit parameter, 
− δm – the value of circuit parameters deviation, 
− tolm – the tolerance of circuit parameters of the m-th group, 
− α-, α+, β-, β+ – coefficients limiting the possible size of GPF. 



GPF affects all Nm circuit parameters of the m-th group. Circuit parameters' values change 
δm times. Coefficients β± and α± define the maximum and minimum value of the fault.  

There has been a gap between areas, in circuit parameters space, defined with circuit 
parameter tolerances and GPF assumed. In [19], it is proven that it is impossible to determine 
a faulty circuit under small values of parametric faults. 

The aim of testing is determining whether a circuit under test is intact or faulty (GO/NO-
GO test). A fault location should answer a question which of the circuit parameters (group of 
circuit parameters) is faulty. A fault identification provides further information allowing to 
determine the character and values of faults [1]. 

The circuit states set is defined by the equation: 
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Taking that each of M circuit parameters group may be faulty: 
 

                                                                 Mk ⋅= θθ ,                                                              (5) 
 

where kθ=21 and the number of all circuit states is θ+1. 
 Non-faulty and faulty circuits performance may be determined with the use of Monte 

Carlo analysis. The analysis allows as well to calculate ambiguity areas. If the circuit 
performance (e.g. CUT time domain response features) is within the ambiguity area it is 
impossible to distinguish circuit states [1]. 

 
2.2. Time Domain Response Features 
 

A sampled stimulus is given with a vector: 
 

                                           ( ){ }tktxxKkx kk ∆⋅==−== ;1,,0: …x ,                                   (6) 
where: 

− x(t) – test excitation, 
− Tmax – sampling time 
− K – number of samples, 
− ∆t – sampling step: 
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The circuit-under-test response is given with a vector: 
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where y(t) – CUT response, and CUT response first order derivative with a vector: 
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1 Broadly, there are two ranges of a parametric fault, i.e. “upper”, with circuit  parameters values greater than the 
ones given with tolerances, and “lower”, with circuit parameters values smaller than the ones given with 
tolerances. 



 
 

Fig. 1. Testing route. 
 

A testing route is presented in Fig. 1. It has been decided to utilize both circuit’s time 
domain response and its first-order derivative. It can be estimated by circuit response’s first 
differential, according to the equation: 
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Usually, there are several time response features (e.g. rise time, steady state value, slew 
rate and the like) used in analog circuits testing. In the research presented in this paper it has 
been decided to employ the CUT response and its derivative maxima and minima location. 
Sets of maxima and minima are given with equations: 
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where: 
− D-2 – the highest order of utilized derivatives (in the presented research D-2=1 – first 

order derivative), 
− D=0 – denotes the CUT response, 
− L – number of analyzed maxima (and minima) locations. 
A set of basic features (BF) contains the circuit response and its derivative maxima and 
minima. It is defined as:  
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where: 

− CB – basic features set, 
− CBj – j-th basic feature, 
− J – number of extracted basic features, 
− sj

iCB , –  i-th sample of j-th basic features for the s-th circuit state2, 
− NMC – number of Monte Carlo analyses run for each of circuit states, 
− sj

ixCB ,
, – x-coordinate of sj

iCB , , 

                                                 
2 A sample of a basic feature means a random circuit state for which circuit parameter values have been 
randomly chosen by the means of  e.g. Monte Carlo analysis. 



− sj
iyCB ,

,  – y-coordinate of sj
iCB , . 

It is possible to present the basic features in rectangular, Cartesian coordinates, whose 
dimensions, sj

xCB ,  and sj
yCB , , are defined by following basic features. This possibility has 

been used in the process of GPF identification in [15, 16, 17]. 
The diagnosis method presented in this paper utilizes artificial neural networks for the 

purpose of classification of  samples of basic features. 
 

3. Artificial Neural Networks 
 

In the presented research an ANN has been used as a CUT response basic features 
classifier in the process of GPF identification. 

The ANN may be described as: 
 

                                                { }outputsinputs ,, layersANN = ,                                           (16) 
where: 

− inputs – number of the neural network inputs,  
− outputs – number of the network outputs, 
 

                                                 { }Aalayera ,,1: …==layers ,                                               (15) 
where layera – number of neurons in the a-th layer. 
The number of ANN inputs depends on the number of basic features. Each basic feature is 

composed of two numbers (equations (11) – (15)), thus Jinputs ⋅= 2 . The number of outputs 
depends on the number of circuit states and the chosen coding.  

In the presented work, there have been two coding methods employed: 
− a modified “one hot”' code, 
− a natural binary code.  

A bipolar sigmoid transfer function (tan-sig) has been implemented in hidden layers' 
neurons and a unipolar sigmoid (log-sig) function in the output layer [20-23].  

A training set trn contains TR vectors. The corresponding output set is given with tout. A 
validation vector val contains VL vectors. In the presented research TF and VL have been 
chosen in the way that TRVL ⋅= 3 . Additionally, ( )1+⋅=+ θMCNTRVL , where NMC is the 
number of MC analyses carried out for each of the circuit states. 

 
3.1. Modified “One Hot” Code 
 

Each of ANN outputs is corresponding to one of the circuit states, thus 1+= θoutputs . 
The main advantage of this coding is the ease of interpretation and finding the natural 
ambiguity sets.  
The ANN output is given with a vector: 
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where out

otANN  is the ot-th ANN output,  ANNout is a vector of real numbers. It is essential to 
apply a discrimination procedure. A modified “winner takes all” strategy has been used.    

The binary output vector bANNout is determined due to the presented procedure: 
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where: 
− dlvl – a discrimination level, 
− normout

otANN ,  –  the ot-th value of ANNout,norm vector. 
The normalized ANNout,norm vector is determined according to the equation: 
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If dlvl<1 it is possible to determine ambiguity sets. In the presented research dlvl=0.9.  

 
3.2. Natural Binary Code 
 

The coding method presented before is characterized by simplicity. A disadvantage of this 
method of coding is the high number of network outputs. It may lead to a situation in which 
there are significantly more ANN outputs than inputs or to an unacceptable number of 
outputs. 

A way to limit the number of ANN outputs is to apply a natural binary coding of circuit 
states. There might be several binary codes chosen, e.g. natural, Gray code or error-correcting 
codes. In this paper there a natural binary code has been utilized. 

There have been two implementations of binary coding researched. The difference between 
methods appears at the ANN outputs’ discrimination stage: 
− a method employing a fixed discrimination level, 
− a method employing a dynamically adjusted discrimination level. 

The structure of ANN is the same as in the previously discussed coding method, given by 
equation (16). The number of outputs is ( ) 1log2 += θoutputs . 

The discrimination in the former of these methods is carried out according to the 
procedure: 
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where: 
− mlvl – insensitivity level, 
− dlvl – discrimination level. 

Application of mlvl≠0 causes a formation of ambiguity sets. In case of a fixed 
discrimination level dlvl should be the same regardless of the ot-th bit position. 

A dynamically adjusted discrimination level may be useful in case of irregular coding, i.e. 
codes that use significantly more ones than zeros at the ot-th position.  

The method of determining the discrimination level can be divided into four stages: 
1st stage. For each of the ANN outputs find a sum of bits whose expected values have been 

either one or zero: 
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2nd stage. Find the number of ones and zeros for each of the output bits: 
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where ( ){ }⋅  denotes a cardinal number. 
3rd stage. Calculate average values of zeros and ones for each of the ANN outputs: 
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4th stage. Calculate the discrimination level for each of the ANN outputs: 
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The discrimination procedure is as follows: 
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The existence of “half-bits” has allowed to find ambiguity sets. If there is a “half-bit” in 

the bANNout vector there is the necessity of determining whether all of possible circuit states 
are correct, i.e. if coded circuit states exist3. This analysis might allow a simple ANN output 
correction. Of course, it is possible only if the number of ANN output allows for coding 
additional circuit states. 

 
4. Examples 
 

The presented diagnosis method has been verified with the use of three computational 
examples: an operational amplifier µA741 (Fig. 2), a sinewave oscillator (Fig. 3) and an 
integrated band-pass filter (Fig. 4). All operational amplifiers in the integrated filter have been 
modelled with the use of a µA741 physical model.  

It is necessary to emphasize that there are no documented benchmarks available that would 
allow for any comparison of methods presented in the paper. For this purpose, two classical 
classification methods have been applied: a linear classifier and a Nearest Neighbourhood 
Method classifier. The results of the comparison are discussed in a further part of this paper. 

                                                 
3 Let’s assume bANNout=[1{0.5}000], which may code circuit states with ID: 24 or 16. If  the number of circuit 
states θ+1=17 and a natural binary code has been utilized, it is obvious that the only possible solution is circuit 
states with the ID: 16. A similar analysis shall be applied for all vectors including a higher number of “half-bits”. 



 
 
 
 
 
 
 

Fig. 2.  Exemplary circuit 1 – an operational amplifier µA741. 
 

 

 
 
 
 
 
 
 

Fig. 3.  Exemplary circuit 2 – a sinewave oscillator. 
 

 

 



 
Fig. 4.  Exemplary circuit 3 – an integrated filter. 

 
4.1. Diagnosis environment 
 

In this paper, only passive circuit parameters have been considered as possibly faulty. They 
have been grouped according to their type, i.e. resistors and capacitors. It has been assumed 
that only one circuit parameter group can be affected by a global parametric fault. It has been 
decided to divide each of the GPF ranges into 4=Λ  equal sub-ranges, thus the effective 
number of circuit states has been 171 =+⋅Λ⋅= Mkθθ  (kθ=2 ranges of GPF, Λ=4 sub-
ranges, M=2 groups). Introducing sub-ranges increases the resolution of fault identification 
and thus may carry additional items of information, useful in adjusting manufacturing process 
parameters 

The used GPF model parameters are presented in Table 1. Sub-ranges of GPF for both 
resistors and capacitors are presented in Table 2.  
 

Table 1. Global parametric fault model parameters. 

Parameter Value Parameter Value 

tolR 10.0% tolC 5.0% 
α- 0.5 α+ 2.0 
β- 2.0 β+ 1.0 
 

Table 2. Global parametric fault sub-ranges. 

ID Circuit state ID Circuit state 
0 non-faulty  
1 R(0.5375±7.0%) 9 C(0.5500±9.1%) 
2 R(0.6125±6.1%) 10 C(0.6500±7.7%) 
3 R(0.6875±5.5%) 11 C(0.7500±6.7%) 
4 R(0.7625±4.9%) 12 C(0.8500±5.9%) 
5 R(1.3000±7.7%) 13 C(1.2125±9.3%) 
6 R(1.5000±6.7%) 14 C(1.4375±7.8%) 
7 R(1.7000±5.9%) 15 C(1.6625±6.8%) 
8 R(1.9000±5.3%) 16 C(1.8875±6.0%) 
 

The margin between the area given by circuit parameter tolerances and the faulty area was 
equal to ( )⋅⋅ tol2 . 

 



A voltage step has been utilized as the  test excitation. For each of the circuit states a 
Monte Carlo analysis of NMC=200 runs has been performed. Both the circuit response and its 
derivative have been measured. 

It has been decided to use a neural network consisting of two hidden layers, outputs⋅3 , for 
the method with the modified “one hot” coding, and outputs⋅6 , for the method employing a 
binary code, neurons in each of them. 
 
4.2. Diagnosis results 
 

The diagnosis results are presented in Table 3. For the purpose of a comparison, a circuit 
states identification with the use of classical classification techniques, i.e. a linear classifier 
and Nearest Neighborhood Method classifier, has been submitted. 
 

Table 3. Diagnosis results. 

Circuit Circuit States Identification 
Quality Indicator 

ANN 
“one 
hot” 

ANN 
fixed 

ANN 
adjusted 

Linear 
Class. 

NNM 
Class. 

Detection [%] 92.7 85.3 80.7 80.0 66.0 
False positive [%] 1.1 0.9 0.5 1.6 1.5 
Classified incorrectly [%] 13.5 15.5 15.3 47.4 58.3 
Not classified [%] 0.0 1.7 1.3 0.0 0.0 
Class. unequivocally [%] 84.2 81.5 81.9 52.6 41.7 
Class. 2 elem. ambiguity set4 [%] 2.3 1.3 1.5 0.0 0.0 

µA741 

Class. >2 elem. ambiguity set5 [%] 0.0 0.0 0.0 0.0 0.0 
Detection [%] 84.7 78.0 57.3 36.0 35.3 
False positive [%] 1.3 1.5 1.0 8.8 14.2 
Classified incorrectly [%] 16.8 20.7 23.3 63.4 52.7 
Not classified [%] 0.0 2.2 5.4 0.0 0.0 
Class. unequivocally [%] 80.8 74.1 69.4 36.6 47.3 
Class. 2 elem. ambiguity set [%] 2.4 2.9 1.8 0.0 0.0 

Oscillator 

Class. >2 elem. ambiguity set [%] 0.0 0.0 0.1 0.0 0.0 
Detection [%] 85.3 70.0 56.3 95.0 10.0 
False positive [%] 0.8 0.5 1.0 0.5 6.0 
Classified incorrectly [%] 16.7 24.9 25.1 49.5 81.5 
Not classified [%] 0.0 1.2 6.8 0.0 0.0 
Class. unequivocally [%] 79.0 72.0 66.0 50.5 18.5 
Class. 2 elem. ambiguity set [%] 3.9 1.8 2.1 0.0 0.0 

Filter 

Class. >2 elem. ambiguity set [%] 0.4 0.0 0.8 0.0 0.0 
 

All unclassified circuit probes should be interpreted as an unknown fault6. Ambiguity sets 
containing a non-faulty state (S0) have been interpreted as fault-free circuits. 

Application of modified “one hot” circuit states coding allowed for acquiring the best 
results in each of the cases. The detection level has been at least 80.0%, which is a 
satisfactory result. Unequivocal identification remained at the same level (79.0%, the worst 
result, for the integrated filter). 

Reducing the ANN size effected with all identification quality indicators degrading. The 
most significant changes have been recorded for the method employing a binary code and a 

                                                 
4 Classified to ambiguity sets consisting of two circuit states. One of them has been classified correctly. 
5 Classified to ambiguity sets consisting of more than two circuit states. One of them has been classified    
correctly. 
6 A fault that has not been assumed at the faults' simulation state. 



dynamically adjusted discrimination level (the unequivocal identification level has dropped 
below 60%). 

Each of ANN applications has led to better results than any classical classification method, 
regardless of the utilized circuit states coding. 
 
5. Conclusions 
 

A diagnosis of analog integrated circuits is undoubtedly one of the most important issues in 
nowadays electronic engineering. The character of integrated circuits manufacturing 
technology influences the fault profile. The most common faults are multiple and proportional 
parametric faults – global parametric faults. 

A circuit states identification procedure has been presented. It is based on basic features 
classification with the use of an artificial neural network. A set of basic features contains the 
CUT responses and its first order derivative maxima and minima.  

The precision of identification is increased by dividing the global parametric fault range 
into equal sub-ranges.  

The first of the presented methods is based on encoding circuit states with a modified “one 
hot”' binary coding, which allows easy interpretation of identification process results. A 
method of ANN output discrimination has been presented. It is based on a modified “winner 
takes all” strategy. The main advantage of this method is a natural ambiguity sets 
determination. This method requires large neural networks, which may not be acceptable in 
case of hardware implementations.  

This obstacle may be bypassed by coding circuit states with binary codes. This possibility 
has been utilized in the second and third of the presented diagnosis methods.    

The presented diagnosis methods have been verified with the use of three ds computational 
examples – an operational amplifier (µA741), a sinewave oscillator and an integrated filter. 
Diagnosis results have been compared with those acquired with the use of two classical 
classification methods. This comparison has proven that ANN-based methods are more 
efficient and of a higher quality than classical methods. Limiting the ANN size, by binary 
coding application, has led to worsening of identification results. 
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